Wednesday 20 June 2018

Both g-2 anomalies

Two months ago an experiment in Berkeley announced a new ultra-precise measurement of the fine structure constant α using interferometry techniques. This wasn't much noticed because the paper is not on arXiv, and moreover this kind of research is filed under metrology, which is easily confused with meteorology. So it's worth commenting on why precision measurements of α could be interesting for particle physics. What the Berkeley group really did was to measure the mass of the cesium-133 atom, achieving the relative accuracy of 4*10^-10, that is 0.4 parts par billion (ppb). With that result in hand, α can be determined after a cavalier rewriting of the high-school formula for the Rydberg constant:
Everybody knows the first 3 digits of the Rydberg constant, Ry≈13.6 eV, but actually it is experimentally known with the fantastic accuracy of 0.006 ppb, and the electron-to-atom mass ratio has also been determined precisely. Thus the measurement of the cesium mass can be translated into a 0.2 ppb measurement of the fine structure constant: 1/α=137.035999046(27).

You may think that this kind of result could appeal only to a Pythonesque chartered accountant. But you would be wrong. First of all, the new result excludes  α = 1/137 at 1 million sigma, dealing a mortal blow to the field of epistemological numerology. Perhaps more importantly, the result is relevant for testing the Standard Model. One place where precise knowledge of α is essential is in calculation of the magnetic moment of the electron. Recall that the g-factor is defined as the proportionality constant between the magnetic moment and the angular momentum. For the electron we have
Experimentally, ge is one of the most precisely determined quantities in physics,  with the most recent measurement quoting a= 0.00115965218073(28), that is 0.0001 ppb accuracy on ge, or 0.2 ppb accuracy on ae. In the Standard Model, ge is calculable as a function of α and other parameters. In the classical approximation ge=2, while the one-loop correction proportional to the first power of α was already known in prehistoric times thanks to Schwinger. The dots above summarize decades of subsequent calculations, which now include O(α^5) terms, that is 5-loop QED contributions! Thanks to these heroic efforts (depicted in the film  For a Few Diagrams More - a sequel to Kurosawa's Seven Samurai), the main theoretical uncertainty for the Standard Model prediction of ge is due to the experimental error on the value of α. The Berkeley measurement allows one to reduce the relative theoretical error on adown to 0.2 ppb:  ae = 0.00115965218161(23), which matches in magnitude the experimental error and improves by a factor of 3 the previous prediction based on the α measurement with rubidium atoms.

At the spiritual level, the comparison between the theory and experiment provides an impressive validation of quantum field theory techniques up to the 13th significant digit - an unimaginable  theoretical accuracy in other branches of science. More practically, it also provides a powerful test of the Standard Model. New particles coupled to the electron may contribute to the same loop diagrams from which ge is calculated, and could shift the observed value of ae away from the Standard Model predictions. In many models, corrections to the electron and muon magnetic moments are correlated. The latter famously deviates from the Standard Model prediction by 3.5 to 4 sigma, depending on who counts the uncertainties. Actually, if you bother to eye carefully the experimental and theoretical values of ae beyond the 10th significant digit you can see that they are also discrepant, this time at the 2.5 sigma level. So now we have two g-2 anomalies! In a picture, the situation can be summarized as follows:

If you're a member of the Holy Church of Five Sigma you can almost preach an unambiguous discovery of physics beyond the Standard Model. However, for most of us this is not the case yet. First, there is still some debate about the theoretical uncertainties entering the muon g-2 prediction. Second, while it is quite easy to fit each of the two anomalies separately, there seems to be no appealing model to fit both of them at the same time.  Take for example the very popular toy model with a new massive spin-1 Z' boson (aka the dark photon) kinetically mixed with the ordinary photon. In this case Z' has, much like the ordinary photon, vector-like and universal couplings to electron and muons. But this leads to a positive contribution to g-2, and it does not fit well the ae measurement which favors a new negative contribution. In fact, the ae measurement provides the most stringent constraint in part of the parameter space of the dark photon model. Conversely, a Z' boson with purely axial couplings to matter does not fit the data as it gives a negative contribution to g-2, thus making the muon g-2 anomaly worse. What might work is a hybrid model with a light Z' boson having lepton-flavor violating interactions: a vector coupling to muons and a somewhat smaller axial coupling to electrons. But constructing a consistent and realistic model along these lines is a challenge because of other experimental constraints (e.g. from the lack of observation of μ→eγ decays). Some food for thought can be found in this paper, but I'm not sure if a sensible model exists at the moment. If you know one you are welcome to drop a comment here or a paper on arXiv.

More excitement on this front is in store. The muon g-2 experiment in Fermilab should soon deliver first results which may confirm or disprove the muon anomaly. Further progress with the electron g-2 and fine-structure constant measurements is also expected in the near future. The biggest worry is that, if the accuracy improves by another two orders of magnitude, we will need to calculate six loop QED corrections...

Tuesday 5 June 2018

Can MiniBooNE be right?

The experimental situation in neutrino physics is confusing. One one hand, a host of neutrino experiments has established a consistent picture where the neutrino mass eigenstates are mixtures of the 3 Standard Model neutrino flavors νe, νμ, ντ. The measured mass differences between the eigenstates are Δm12^2 ≈ 7.5*10^-5 eV^2 and Δm13^2 ≈ 2.5*10^-3 eV^2, suggesting that all Standard Model neutrinos have masses below 0.1 eV. That is well in line with cosmological observations which find that the radiation budget of the early universe is consistent with the existence of exactly 3 neutrinos with the sum of the masses less than 0.2 eV. On the other hand, several rogue experiments refuse to conform to the standard 3-flavor picture. The most severe anomaly is the appearance of electron neutrinos in a muon neutrino beam observed by the LSND and MiniBooNE experiments.

This story begins in the previous century with the LSND experiment in Los Alamos, which claimed to observe νμνe antineutrino oscillations with 3.8σ significance.  This result was considered controversial from the very beginning due to limitations of the experimental set-up. Moreover, it was inconsistent with the standard 3-flavor picture which, given the masses and mixing angles measured by other experiments, predicted that νμνe oscillation should be unobservable in short-baseline (L ≼ km) experiments. The MiniBooNE experiment in Fermilab was conceived to conclusively prove or disprove the LSND anomaly. To this end, a beam of mostly muon neutrinos or antineutrinos with energies E~1 GeV is sent to a detector at the distance L~500 meters away. In general, neutrinos can change their flavor with the probability oscillating as P ~ sin^2(Δm^2 L/4E). If the LSND excess is really due to neutrino oscillations, one expects to observe electron neutrino appearance in the MiniBooNE detector given that L/E is similar in the two experiments. Originally, MiniBooNE was hoping to see a smoking gun in the form of an electron neutrino excess oscillating as a function of L/E, that is peaking at intermediate energies and then decreasing towards lower energies (possibly with several wiggles). That didn't happen. Instead, MiniBooNE finds an excess increasing towards low energies with a similar shape as the backgrounds. Thus the confusion lingers on: the LSND anomaly has neither been killed nor robustly confirmed.

In spite of these doubts, the LSND and MiniBooNE anomalies continue to arouse interest. This is understandable: as the results do not fit the 3-flavor framework, if confirmed they would prove the existence of new physics beyond the Standard Model. The simplest fix would be to introduce a sterile neutrino νs with the mass in the eV ballpark, in which case MiniBooNE would be observing the νμνsνe oscillation chain. With the recent MiniBooNE update the evidence for the electron neutrino appearance increased to 4.8σ, which has stirred some commotion on Twitter and in the blogosphere. However, I find the excitement a bit misplaced. The anomaly is not really new: similar results showing a 3.8σ excess of νe-like events were already published in 2012.  The increase of the significance is hardly relevant: at this point we know anyway that the excess is not a statistical fluke, while a systematic effect due to underestimated backgrounds would also lead to a growing anomaly. If anything, there are now less reasons than in 2012 to believe in the sterile neutrino origin the MiniBooNE anomaly, as I will argue in the following.

What has changed since 2012? First, there are new constraints on νe appearance from the OPERA experiment (yes, this OPERA) who did not see any excess νe in the CERN-to-Gran-Sasso νμ beam. This excludes a large chunk of the relevant parameter space corresponding to large mixing angles between the active and sterile neutrinos. From this point of view, the MiniBooNE update actually adds more stress on the sterile neutrino interpretation by slightly shifting the preferred region towards larger mixing angles...  Nevertheless, a not-too-horrible fit to all appearance experiments can still be achieved in the region with Δm^2~0.5 eV^2 and the mixing angle sin^2(2θ) of order 0.01.

Next, the cosmological constraints have become more stringent. The CMB observations by the Planck satellite do not leave room for an additional neutrino species in the early universe. But for the parameters preferred by LSND and MiniBooNE, the sterile neutrino would be abundantly produced in the hot primordial plasma, thus violating the Planck constraints. To avoid it, theorists need to deploy a battery of  tricks (for example, large sterile-neutrino self-interactions), which makes realistic models rather baroque.

But the killer punch is delivered by disappearance analyses. Benjamin Franklin famously said that only two things in this world were certain: death and probability conservation. Thus whenever an electron neutrino appears in a νμ beam, a muon neutrino must disappear. However, the latter process is severely constrained by long-baseline neutrino experiments, and recently the limits have been further strengthened thanks to the MINOS and IceCube collaborations. A recent combination of the existing disappearance results is available in this paper.  In the 3+1 flavor scheme, the probability of a muon neutrino transforming into an electron  one in a short-baseline experiment is
where U is the 4x4 neutrino mixing matrix.  The Uμ4 matrix elements controls also the νμ survival probability
The νμ disappearance data from MINOS and IceCube imply |Uμ4|≼0.1, while |Ue4|≼0.25 from solar neutrino observations. All in all, the disappearance results imply that the effective mixing angle sin^2(2θ) controlling the νμνsνe oscillation must be much smaller than 0.01 required to fit the MiniBooNE anomaly. The disagreement between the appearance and disappearance data had already existed before, but was actually made worse by the MiniBooNE update.
So the hypothesis of a 4th sterile neutrino does not stand scrutiny as an explanation of the MiniBooNE anomaly. It does not mean that there is no other possible explanation (more sterile neutrinos? non-standard interactions? neutrino decays?). However, any realistic model will have to delve deep into the crazy side in order to satisfy the constraints from other neutrino experiments, flavor physics, and cosmology. Fortunately, the current confusing situation should not last forever. The MiniBooNE photon background from π0 decays may be clarified by the ongoing MicroBooNE experiment. On the timescale of a few years the controversy should be closed by the SBN program in Fermilab, which will add one near and one far detector to the MicroBooNE beamline. Until then... years of painful experience have taught us to assign a high prior to the Standard Model hypothesis. Currently, by far the most plausible explanation of the existing data is an experimental error on the part of the MiniBooNE collaboration.