Wednesday 25 February 2015

Persistent trouble with bees

No, I still have nothing to say about colony collapse disorder... this blog will stick to physics for at least 2 more years. This is an update on the anomalies in B decays reported by the LHCbee experiment. The two most important ones are:

  1. The  3.7 sigma deviation from standard model predictions in the differential distribution of the B➝K*μ+μ- decay products.
  2.  The 2.6 sigma violation of lepton flavor universality in B+→K+l+l- decays. 

 The first anomaly is statistically more significant. However, the theoretical error of the standard model prediction is not trivial to estimate and the significance of the anomaly is subject to fierce discussions. Estimates in the literature range from 4.5 sigma to 1 sigma, depending on what is assumed about QCD uncertainties. For this reason, the second anomaly made this story much more intriguing.  In that case, LHCb measures the ratio of the decay with muons and with electrons:  B+→K+μ+μ- vs B+→K+e+e-. This observable is theoretically clean, as large QCD uncertainties cancel in the ratio. Of course, 2.7 sigma significance is not too impressive; LHCb once had a bigger anomaly (remember CP violation in D meson decays?)  that is now long gone. But it's fair to say that the two anomalies together are marginally interesting.      

One nice thing is that both anomalies can be explained at the same time by a simple modification of the standard model. Namely, one needs to add the 4-fermion coupling between a b-quark, an s-quark, and two muons:

with Λ of order 30 TeV. Just this one extra coupling greatly improves a fit to the data, though other similar couplings could be simultaneously present. The 4-fermion operators can be an effective description of new heavy particles coupled to quarks and leptons.  For example, a leptoquark (scalar particle with a non-zero color charge and lepton number) or a Z'  (neutral U(1) vector boson) with mass in a few TeV range have been proposed. These are of course simple models created ad-hoc. Attempts to put these particles in a bigger picture of physics beyond  the standard model have not been very convincing so far, which may be one reason why the anomalies are viewed a bit skeptically. The flip side is that, if the anomalies turn out to be real, this will point to unexpected symmetry structures around the corner.

Another nice element of this story is that it will be possible to acquire additional relevant information in the near future. The first anomaly is based on just 1 fb-1 of LHCb data, and it will be updated to full 3 fb-1 some time this year. Furthermore, there are literally dozens of other B decays where the 4-fermion operators responsible for the anomalies could  also show up. In fact, there may already be some hints that this is happening. In the table borrowed from this paper we can see that there are several other  2-sigmish anomalies in B-decays that may possibly have the same origin. More data and measurements in  more decay channels should clarify the picture. In particular, violation of lepton flavor universality may come together with lepton flavor violation.  Observation of decays forbidden in the standard model, such as B→Keμ or  B→Kμτ, would be a spectacular and unequivocal signal of new physics.

Saturday 7 February 2015

Weekend Plot: Inflation'15

The Planck collaboration is releasing new publications based on their full dataset, including CMB temperature and large-scale polarization data.  The updated values of the crucial  cosmological parameters were already made public in December last year, however one important new element is the combination of these result with the joint Planck/Bicep constraints on the CMB B-mode polarization.  The consequences for models of inflation are summarized in this plot:

It shows the constraints on the spectral index ns and the tensor-to-scalar ratio r of the CMB fluctuations, compared to predictions of various single-field models of inflation.  The limits on ns changed slightly compared to the previous release, but the more important progress is along the y-axis. After including the joint Planck/Bicep analysis (in the plot referred to as BKP), the combined limit on the tensor-to-scalar ratio becomes r < 0.08.  What is also important, the new limit is much more robust; for example, allowing for a scale dependence of the spectral index  relaxes the bound  only slightly,  to r< 0.10.

The new results have a large impact on certain classes models. The model with the quadratic inflaton potential, arguably the simplest model of inflation, is now strongly disfavored. Natural inflation, where the inflaton is a pseudo-Golsdtone boson with a cosine potential, is in trouble. More generally, the data now favors a concave shape of the inflaton potential during the observable period of inflation; that is to say, it looks more like a hilltop than a half-pipe. A strong player emerging from this competition is R^2 inflation which, ironically, is the first model of inflation ever written.  That model is equivalent to an exponential shape of the inflaton potential, V=c[1-exp(-a φ/MPL)]^2, with a=sqrt(2/3) in the exponent. A wider range of the exponent a can also fit the data, as long as a is not too small. If your favorite theory predicts an exponential potential of this form, it may be a good time to work on it. However, one should not forget that other shapes of the potential are still allowed, for example a similar exponential potential without the square V~ 1-exp(-a φ/MPL), a linear potential V~φ, or more generally any power law potential V~φ^n, with the power n≲1. At this point, the data do not favor significantly one or the other. The next waves of CMB polarization experiments should clarify the picture. In particular, R^2 inflation predicts 0.003 < r < 0.005, which is should be testable in a not-so-distant future.

Planck's inflation paper is here.

Wednesday 4 February 2015

B-modes: what's next


The signal of gravitational waves from inflation is the holy grail of cosmology. As is well known, at the end of a quest for the holy grail there is always the Taunting Frenchman....  This is also the fate of the BICEP quest for primordial B-mode polarization imprinted in the Cosmic Microwave Background by the gravitational waves.  We've already known, since many months, that the high intensity of the galactic dust foreground does not allow BICEP2 to unequivocally detect the primordial B-mode signal. The only open question was how strong limits on the parameter r - the tensor-to-scalar ratio of primordial fluctuations - can be set. This is the main result of the recent paper that combines data from the BICEP2, Keck Array, and Planck instruments. BICEP2 and Keck are orders of magnitude more sensitive than Planck to CMB polarization fluctuations. However, they made measurements only at one frequency of 150 GhZ where the CMB signal is large. Planck, on the other hand, can contribute  measurements at higher frequencies where the galactic dust dominates, which allows them to map out the foregrounds in the window observed by BICEP. Cross-correlating the Planck and BICEP maps allows one to subtract the dust component, and extract the constraints on the parameter r. The limit quoted by BICEP and Planck,  r < 0.12, is however worse than  r < 0.11 from Planck's analysis of temperature fluctuations. This still leaves a lot of room for the primordial B-mode signal hiding in the CMB.  

So the BICEP2 saga is definitely over, but the search for the primordial B-modes is not.  The lesson we learned is that single frequency instruments like BICEP2 are not good in view of large galactic foregrounds. The road ahead is then clear: build more precise multi-frequency instruments, such that foregrounds can be subtracted. While we will not send a new CMB satellite observatory anytime soon, there are literally dozens of ground based and balloon CMB experiments already running or coming online in the near future. In particular, the BICEP program continues, with Keck Array running at other frequencies, and the more precise BICEP3 telescope to be completed this year. Furthermore, the SPIDER balloon experiment just completed the first Antarctica flight early this year, with a two-frequency instrument on board. Hence, better limits on r are expected already this year. See the snapshots below, borrowed from these slides, for a compilation of upcoming experiments.




Impressive, isn't it? These experiments should be soon sensitive to r~0.01, and in the long run to r~0.001. Of course, there is no guarantee of a detection. If the energy scale of inflation is just a little below 10^16 GeV, then we will never observe the signal of gravitational waves. Thus, the success of this enterprise crucially depends on Nature being kind. However the high stakes make  these searches worthwhile. A discovery, would surely count among the greatest scientific breakthrough of 21st century. Better limits, on the other hand, will exclude some simple models of inflation.  For example, single-field inflation with a quadratic potential is already under pressure. Other interesting models, such as natural inflation, may go under the knife soon. 

For quantitative estimates of future experiments' sensitivity to r, see this paper.