The release of the Fermi data has already spawned two independent analyses by theorists. One is being widely discussed on blogs (here and here) and in popular magazines, whereas the other paper passed rather unnoticed. Both papers claim to have discovered an effect overlooked by the Fermi collaboration, and both hint to dark matter as the origin.
The first (chronologically, the second) of the two papers provides a new piece of evidence that the center of our galaxy hosts the so-called haze - a population of hard electrons (and/or positrons) whose spectrum is difficult to explain by conventional astrophysical processes. The haze was first observed by Jimi Hendrix ('Scuse me while I kiss the sky). Later, Doug Finkbeiner came across the haze when analyzing maps of cosmic microwave radiation provided by WMAP; in fact, that was also an independent analysis of publicly released data (hail to WMAP). The WMAP haze is supposedly produced by synchrotron radiation of the electrons
. But the same electrons should also produce gamma rays when interacting with the interstellar light in the process known as the inverse Compton scattering (Inverse Compton was the younger brother of Arthur), the ICS in short. The claim is that Fermi has detected these ICS photons. You can even see it yourself if you stare long enough into the picture.The second paper also takes a look at the gamma rays arriving from the the galactic center, but uncovers a completely different signature. There seems to be a bumpy feature around a few GeV
that does not fit a simple power-law spectrum expected from the background. The paper says that a dark matter particle of mass around 30 GeV annihilating into b quark pairs can fit the bump. The required annihilation cross section is fairly low, of order $10^{-25} cm^3/s$, only a factor of 3 larger than that needed to explain the observed abundance of dark matter via a thermal relic. That would put this dark matter particle closer to a standard WIMP, as opposed to the recently popular dark matter particles designed to explain the PAMELA positron excess who need a much larger mass and cross section.Sadly, collider physics has a long way to go before reaching the same level of openness. Although collider experiments are 100% financed by public funds, and although acquired data have no commercial value, the data remains a property of the collaboration without ever being publicly released, not even after the collaboration has dissolved into nothingness. The only logical reason to explain that is inertia - a quick and easy access to data and analysis tools has only quite recently become available to everybody. Another argument raised on that occasion is that only the collaboration who produced the data is able to understand and properly handle them. That is of course irrelevant. Surely, the collaboration can make any analysis ten times better and more reliably. However, some analyses are simply never done either due to lack of manpower or laziness, and others are marred by theoretical prejudices. The LEP experiment is a perfect example here. Several important searches have never been done because, at the time, there was no motivation from popular theories. In particular, it is not excluded that the Higgs boson exist with a mass accessible to LEP (that is less than 115 GeV), but it was missed because some possible decay channels have not been studied. It may well be that ground breaking discoveries are stored on the LEP tapes rotting on dusty shelves in CERN catacombs. That danger could be easily avoided if the LEP data were publicly available in an accessible form.
In the end, what do we have to lose? In the worst case scenario, the unrestricted access to data will just lead to more entries in my blog ;-)
Update: At the FERMI Symposium this week in Washington the collaboration trashed both of the above dark matter claims.




