Today at the Moriond conference ATLAS and CMS updated their diphoton resonance searches. There's been a rumor of an ATLAS analysis with looser cuts on the photons where the significance of the 750 GeV excess grows to a whopping 4.7 sigma. The rumor had it that the this analysis would be made public today, so the expectations were high. However, the loose-cuts analysis was not approved in time by the collaboration, and the fireworks display was cancelled. In any case, there was some good news today, and some useful info for model builders was provided. 
Let's start with ATLAS. For the 13 TeV results, they now have two analyses: one called spin-0 and one called spin-2. Naively, the cuts in the latter are not optimized not for a spin-2 resonance but rather for a high-mass resonance (where there's currently no significant excess), so the spin-2 label should not be treated too seriously in this case. Both analyses show a similar excess at 750 GeV: 3.9 and 3.6 sigma respectively for a wide resonance. Moreover, ATLAS provides additional information about the diphoton events, such as the angular distribution of the photons, the number of accompanying jets, the amount of missing energy, etc. This may be very useful for theorists entertaining less trivial models, for example when the 750 GeV resonance is produced from a decay of a heavier parent particle. Finally, ATLAS shows a re-analysis of the diphoton events collected at 8 TeV center-of-energy of the LHC. The former run-1 analysis was a bit sloppy in the interesting mass range; for example, no limits at all were given for a 750 GeV scalar hypothesis. Now the run-1 data have been cleaned up and analyzed using the same methods as in run-2. Excitingly, there's a 2 sigma excess in the spin-0 analysis in run-1, roughly compatible with what one would expect given the observed run-2 excess! No significant excess is seen for the spin-2 analysis, and the tension between the run-1 and run-2 data is quite severe in this case. Unfortunately, ATLAS does not quote the combined significance and the best fit cross section for the 750 GeV resonance.
For CMS, the big news is that the amount of 13 TeV data at their disposal has increased by 20%. Using MacGyver skills, they managed to make sense of the chunk of data collected when the CMS magnet was off due to a technical problem. Apparently it was worth it, as new diphoton events have been found in the 750 GeV ballpark. Thanks to that, and a better calibration, the significance of the diphoton excess in run-2 actually increases up to 2.9 sigma! Furthermore, much like ATLAS, CMS updated their run-1 diphoton analyses and combined them with the run-2 ones. Again, the combination increases the significance of the 750 GeV excess. The combined significance quoted by CMS is 3.4 sigma, similar for spin-0 and spin-2 analyses. Unlike in ATLAS, the best fit is for a narrow resonance, which is the more preferred option from the theoretical point of view.In summary, the diphoton excess survived the first test. After adding more data and improving the analysis techniques the significance slightly increases rather than decreases, as expected for a real particle. The signal is now a bit more solid: both experiments have a similar amount of diphoton data and they both claim a similar significance of the 750 GeV bump. It may be a good moment to rename the ATLAS diphoton excess as the LHC diphoton excess :) So far, the story of 2012 is repeating itself: the initial hints of a new resonance solidify into a consistent picture. Are we going to have another huge discovery this summer?




