Sunday, 18 January 2015

Weekend plot: spin-dependent dark matter

This weekend plot is borrowed from a nice recent review on dark matter detection:
It shows experimental limits on the spin-dependent scattering cross section of dark matter on protons. This observable is not where the most spectacular race is happening, but it is important for constraining more exotic models of dark matter. Typically, a scattering cross section in the non-relativistic limit is independent of spin or velocity of the colliding particles. However, there exist reasonable models of dark matter where the low-energy cross section is more complicated. One possibility is that the interaction strength is proportional to the scalar product of spin vectors of a dark matter particle and a nucleon (proton or neutron). This is usually referred to as the spin-dependent scattering, although other kinds of spin-dependent forces that also depend on the relative velocity are possible.

In all existing direct detection experiments, the target contains nuclei rather than single nucleons. Unlike in the spin-independent case, for spin-dependent scattering the cross section is not enhanced by coherent scattering over many nucleons. Instead, the interaction strength is proportional to the expectation values of the proton and neutron spin operators in the nucleus.  One can, very roughly, think of this process as a scattering on an odd unpaired nucleon. For this reason, xenon target experiments such as Xenon100 or LUX are less sensitive to the spin-dependent scattering on protons because xenon nuclei have an even number of protons.  In this case,  experiments that contain fluorine in their target molecules have the best sensitivity. This is the case of the COUPP, Picasso, and SIMPLE experiments, who currently set the strongest limit on the spin-dependent scattering cross section of dark matter on protons. Still, in absolute numbers, the limits are many orders of magnitude weaker than in the spin-independent case, where LUX has crossed the 10^-45 cm^2 line. The IceCube experiment can set stronger limits in some cases by measuring the high-energy neutrino flux from the Sun. But these limits depend on what dark matter annihilates into, therefore they are much more model-dependent than the direct detection limits.  

Saturday, 10 January 2015

Weekend Plot: axion hunting

We just had a good laugh about the discovery of sharp-turning axions.  However, I should not leave you with the impression that there's something fishy in general with axion searches. On the contrary: while axions are hypothetical particles, they are arguably more motivated than all sorts of sthings and inos out there. Axions may explain the absence of a large  electric dipole moment of the neutron (the so-called strong-CP problem of QCD), and at the same time they may account for a part or all of dark matter in the Universe. The current state of experimental searches for axions is summarized in this plot:
The axes correspond to the two most relevant axion parameters: the mass, and the strength of its coupling to two photons (more precisely, the dimension-5 pion-like couplings to a photon field strength tensor and the dual tensor). In general, these can be independent parameters; however in particular models they are related. For example, in the KSVZ model - one of the QCD axion models solving the strong CP problem - one has m∼1/f and  g∼1/f, where f is the axion symmetry breaking scale. It follows that m and g are proportional to each other, as indicated by the green line in the plot. The yellow band is, roughly, the range predicted by other QCD axion models; therefore it is a natural beacon for axion searches. The CDM2 region in the band is where the QCD axion may account for all of dark matter in the universe.  

Currently, two experiments are at the forefront of axion searches. The CERN Axion Solar Telescope (CAST) attempts to detect axions produced in the Sun's core. The telescope is really a scavenged LHC magnet that converts axions into observable x-ray photons. CAST constrains the axion-photon coupling g  at the level of 10^-10/GeV for axion masses up to 1 eV (for larger masses the conversion length is too large for this setup). The Axion Dark Matter eXperiment (ADMX) targets axions of a different provenience. They search for conversion of axions that make the dark matter halo using a resonant microwave cavity within a magnet. They can probe much smaller values of the axion-photon couplings, but only for a small range of masses limited by the geometry of the cavity. Interestingly, both experiments have managed to probe parts of the QCD axion preferred region. Next stages of ADMX and CAST as well as the future IAXO telescope will continue to nibble the yellow band, although the dark matter preferred region may remain beyond our reach for quite some time...

Friday, 9 January 2015

Do-or-die year

The year 2015 began as any other year... I mean the hangover situation in particle physics. We have a theory of fundamental interactions - the Standard Model - that we know is certainly not the final  theory because it cannot account for dark matter, matter-antimatter asymmetry, and cosmic inflation. At the same time, the Standard Model perfectly describes any experiment we have performed here on Earth (up to a few outliers that can be explained as statistical fluctuations).  This is puzzling, because some these experiments are in principle sensitive to very heavy particles, sometimes well beyond the reach of the LHC or any future colliders. Theorists cannot offer much help at this point. Until recently,  naturalness was the guiding principle in constructing new theories, but  few have retained confidence in it. No other serious paradigm has appeared to replace naturalness. In short, we know for sure there is new physics beyond the Standard Model, but have absolutely no clue what it is and how big energy is needed to access it.

Yet 2015 is different because it is the year when LHC restarts at 13 TeV energy.  We should expect high-energy collisions some time in summer, and around 10 inverse femtobarns of data by the end of the year. This is the last significant energy jump most of us may experience before retirement, therefore this year is going to be absolutely crucial for the future of particle physics. If, by next Christmas, we don't hear any whispers of anomalies in LHC data, we will have to brace for tough times ahead. With no energy increase in sight, slow experimental progress, and no theoretical hints for a better theory, particle physics as we know it will be in deep merde.

You may protest this is too pessimistic. In principle, new physics may show up at the LHC anytime between this fall and the year 2030 when 3 inverse attobarns of data will have been accumulated. So the hope will not die completely anytime soon. However, the subjective probability of making a discovery will decrease exponentially as time goes on, as you can see in the attached plot. Without a discovery, the mood will soon plummet, resembling something of the late Tevatron, rather than the thrill of pushing the energy frontier that we're experiencing now.

But for now, anything may yet happen. Cross your fingers.

Thursday, 1 January 2015

2014 Mad Hat awards

New Year is traditionally the time of recaps and best-ofs. This blog is focused on particle physics beyond the standard model where compiling such lists is challenging, given the dearth of discoveries or even   plausible signals pointing to new physics.  Therefore I thought I could somehow honor those who struggle to promote our discipline by finding new signals against all odds, and sometimes against all logic. Every year from now on, the Mad Hat will be awarded to the researchers who make the most outlandish claim of a particle-physics-related discovery, on the condition it gets enough public attention.

The 2014 Mad Hat award unanimously goes to Andy Read, Steve Sembay, Jenny Carter, Emile Schyns, and, posthumously, to George Fraser, for the paper Potential solar axion signatures in X-ray observations with the XMM–Newton observatory. Although the original arXiv paper sadly went unnoticed, this remarkable work was publicized several months later by the Royal Astronomical Society press release and by the article in Guardian.

The crucial point in this kind of endeavor is to choose an observable that is noisy enough to easily accommodate a new physics signal. In this particular case the observable is x-ray emission from Earth's magnetosphere, which could include a component from axion dark matter emitted from the Sun and converting to photons. A naive axion hunter might expect the conversion signal should be observed by looking at the sun (that is the photon inherits the momentum of the incoming axion), something that XMM cannot do due to technical constraints. The authors thoroughly address this point in a sentence in Introduction, concluding that it would be nice if the x-rays could scatter afterwards at the right angle. Then the signal that is searched for is an annual modulation of the x-ray emission, as the magnetic field strength in XMM's field of view is on average larger in summer than in winter. A seasonal dependence of the x-ray flux is indeed observed, for which axion dark matter is clearly the most plausible explanation.

Congratulations to all involved. Nominations for the 2015 Mad Hat award are open as of today ;) Happy New Year everyone!

Sunday, 21 December 2014

Weekend plot: rare decays of B mesons, once again

This weekend's plot shows the measurement of the branching fractions for neutral B and Bs mesons decays into  muon pairs:
This is not exactly a new thing. LHCb and CMS separately announced evidence for the B0s→μ+μ- decay in summer 2013, and a preliminary combination of their results appeared a few days after. The plot above comes from the recent paper where a more careful combination is performed, though the results change only slightly.

A neutral B meson is a  bound state of an anti-b-quark and a d-quark (B0) or an s-quark (B0s), while for an anti-B meson the quark and the antiquark are interchanged. Their decays to μ+μ- are interesting because they are very suppressed in the standard model. At the parton level, the quark-antiquark pair annihilates into a μ+μ- pair. As for all flavor changing neutral current processes, the lowest order diagrams mediating these decays occur at the 1-loop level. On top of that, there is the helicity suppression by the small muon mass, and the CKM suppression by the small Vts (B0s) or Vtd (B0) matrix elements. Beyond the standard model one or more of these suppression factors may be absent and the contribution could in principle exceed that of the standard model even if the new particles are as heavy as ~100 TeV. We already know this is not the case for the B0s→μ+μ- decay. The measured branching fraction (2.8 ± 0.7)x10^-9  agrees within 1 sigma with the standard model prediction (3.66±0.23)x10^-9. Further reducing the experimental error will be very interesting in view of observed anomalies in some other b-to-s-quark transitions. On the other hand, the room for new physics to show up  is limited,  as the theoretical error may soon become a showstopper.

Situation is a bit different for the B0→μ+μ- decay, where there is still relatively more room for new physics. This process has been less in the spotlight. This is partly due to a theoretical prejudice: in most popular new physics models it is impossible to generate a large effect in this decay without generating a corresponding excess in B0s→μ+μ-. Moreover,  B0→μ+μ- is experimentally more difficult:  the branching fraction predicted by the standard model is (1.06±0.09)x10^-10, which is 30 times smaller than that for  B0s→μ+μ-. In fact, a 3σ evidence for the B0→μ+μ- decay appears only after combining LHCb and CMS data. More interestingly, the measured branching fraction, (3.9±1.4)x10^-10, is some 2 sigma above the standard model value. Of course, this is  most likely a statistical fluke, but nevertheless it will be interesting to see an update once the 13-TeV LHC run collects enough data.

Saturday, 13 December 2014

Planck: what's new

Slides from the recent Planck collaboration meeting are now available online. One can find there preliminary results that include an input from Planck's measurements of the polarization of the  Cosmic Microwave Background (some which were previously available via the legendary press release in French). I already wrote about the new  important limits on dark matter annihilation cross section. Here I picked up a few more things that may be of interest for a garden variety particle physicist.

  • ΛCDM. 
    Here is a summary of Planck's best fit parameters of the standard cosmological model with and without the polarization info:

    Note that the temperature-only numbers are slightly different than in the 2013 release, because of improved calibration and foreground cleaning.  Frustratingly, ΛCDM remains  solid. The polarization data do not change the overall picture, but they shrink some errors considerably. The Hubble parameter remains at a low value; the previous tension with Ia supernovae observations seems to be partly resolved and blamed on systematics on the supernovae side.  For the large scale structure fans, the parameter σ8 characterizing matter fluctuations today remains at a high value, in some tension with weak lensing and cluster counts. 
  • Neff.
    There are also better limits on deviations from ΛCDM. One interesting result is the new improved constraint on the effective number of neutrinos, Neff in short. The way this result is presented may be confusing.  We know perfectly well there are exactly 3 light active (interacting via weak force) neutrinos; this has been established in the 90s at the LEP collider, and Planck has little to add in this respect. Heavy neutrinos, whether active or sterile, would not show in this measurement at all.  For light sterile neutrinos, Neff implies an upper bound on the mixing angle with the active ones. The real importance of  Neff lies in that it counts any light particles (other than photons) contributing to the energy density of the universe at the time of CMB decoupling. Outside the standard model neutrinos, other theorized particles could contribute any real positive number to Neff, depending on their temperature and spin. A few years ago there have been consistent hints of Neff  much larger 3, which would imply physics beyond the standard model. Alas, Planck has shot down these claims. The latest number combining Planck and Baryon Acoustic Oscillations is Neff =3.04±0.18, spot on 3.046 expected from the standard model neutrinos.  This represents an important constraint on any new physics model with very light (less than eV) particles. 
  • Σmν.
    The limit on the sum of the neutrino masses keeps improving and gets into a really interesting regime. Recall that, from oscillation experiments, we can extract the neutrino mass differences: Δm32 ≈ 0.05 eV and Δm12≈0.009 eV up to a sign, but we don't know their absolute masses.  Planck and others have already excluded the possibility that all 3 neutrinos have approximately the same mass. Now they are not far from probing the so-called inverted hierarchy, where two neutrinos have approximately the same mass and the 3rd is much lighter, in which case Σmν ≈ 0.1 eV. Planck and Baryon Acoustic Oscillations set the limit Σmν < 0.16 eV at 95% CL, however this result is not strongly advertised because it is sensitive to the value of the Hubble parameter. Including non-Planck measurements leads to a weaker, more conservative limit Σmν < 0.23 eV, the same as quoted in the 2013 release. 
  • CνB.
    For dessert, something cool. So far we could observe the cosmic neutrino background only through its contribution to the  energy density of radiation in the early universe. This affects observables that can be inferred from the CMB acoustic peaks, such as the Hubble expansion rate or the time of matter-radiation equality. Planck, for the first time, probes the properties of the CνB. Namely, it measures the  effective sound speed ceff and viscosity cvis parameters, which affect the growth of perturbations in the CνB. Free-streaming particles like the neutrinos should have ceff^2 =  cvis^2 = 1/3, while Planck measures ceff^2 = 0.3256±0.0063 and  cvis^2 = 0.336±0.039. The result is unsurprising, but it may help constraining some more exotic models of neutrino interactions. 

To summarize, Planck continues to deliver disappointing results, and there's still more to follow ;)

Monday, 1 December 2014

After-weekend plot: new Planck limits on dark matter

The Planck collaboration just released updated results that include an input from their  CMB polarization measurements. The most interesting are the new constraints on the annihilation cross section of dark matter:

Dark matter annihilation in the early universe injects energy into the primordial plasma and increases the ionization fraction. Planck is looking for imprints of that in the CMB temperature and polarization spectrum. The relevant parameters are the dark matter mass and  <σv>*feff, where <σv> is the thermally averaged annihilation cross section during the recombination epoch, and feff ~0.2 accounts for the absorption efficiency. The new limits are a factor of 5 better than the latest ones from the WMAP satellite, and a factor of 2.5 better than the previous combined constraints.

What does it mean for us?  In vanilla models of thermal WIMP dark matter <σv> = 3*10^-26 cm^3/sec, in which case dark matter particles with masses below ~10 GeV are excluded by Planck. Actually, in this mass range the Planck limits are far less stringent the ones obtained by the Fermi collaboration from gamma-ray observations of dwarf galaxies. However, the two are complementary to some extent. For example, Planck probes the annihilation cross section in the early universe, which can be different than today. Furthermore, the CMB constraints obviously do not depend on the distribution of dark matter in galaxies, which is a serious source of uncertainty for cosmic rays experiments.  Finally, the CMB limits extend to higher dark matter masses where gamma-ray satellites lose sensitivity. The last point implies that Planck can weigh in on the PAMELA/AMS cosmic-ray positron excess. In models where the dark matter annihilation cross section during the recombination epoch is the same as today, the mass and cross section range that can explain the excess is excluded by Planck. Thus, the new results make it even more difficult to interpret the positron anomaly as a signal of dark matter.