
In Einstein's general relativity, gravitational interactions are mediated by a massless spin-2 particle - the so-called graviton. This is what gives it its hallmark properties: the long range and the universality. One obvious way to screw with Einstein is to add mass to the graviton, as entertained already in 1939 by Fierz and Pauli. The Particle Data Group quotes the constraint m ≤ 6*10^−32 eV, so we are talking about the De Broglie wavelength comparable to the size of the observable universe. Yet even that teeny mass may cause massive troubles. In 1970 the Fierz-Pauli theory was killed by the van Dam-Veltman-Zakharov (vDVZ) discontinuity. The problem stems from the fact that a massive spin-2 particle has 5 polarization states (0,±1,±2) unlike a massless one which has only two (±2). It turns out that the polarization-0 state couples to matter with the similar strength as the usual polarization ±2 modes, even in the limit where the mass goes to zero, and thus mediates an additional force which differs from the usual gravity. One finds that, in massive gravity, light bending would be 25% smaller, in conflict with the very precise observations of stars' deflection around the Sun. vDV concluded that "the graviton has rigorously zero mass". Dead for the first time...
The second coming was heralded soon after by Vainshtein, who noticed that the troublesome polarization-0 mode can be shut off in the proximity of stars and planets. This can happen in the presence of graviton self-interactions of a certain type. Technically, what happens is that the polarization-0 mode develops a background value around massive sources which, through the derivative self-interactions, renormalizes its kinetic term and effectively diminishes its interaction strength with matter. See here for a nice review and more technical details. Thanks to the Vainshtein mechanism, the usual predictions of general relativity are recovered around large massive source, which is exactly where we can best measure gravitational effects. The possible self-interactions leading a healthy theory without ghosts have been classified, and go under the name of the dRGT massive gravity.
There is however one inevitable consequence of the Vainshtein mechanism. The graviton self-interaction strength grows with energy, and at some point becomes inconsistent with the unitarity limits that every quantum theory should obey. This means that massive gravity is necessarily an effective theory with a limited validity range and has to be replaced by a more fundamental theory at some cutoff scale 𝞚. This is of course nothing new for gravity: the usual Einstein gravity is also an effective theory valid at most up to the Planck scale MPl~10^19 GeV. But for massive gravity the cutoff depends on the graviton mass and is much smaller for realistic theories. At best,
So the massive gravity theory in its usual form cannot be used at distance scales shorter than ~300 km. For particle physicists that would be a disaster, but for cosmologists this is fine, as one can still predict the behavior of galaxies, stars, and planets. While the theory certainly cannot be used to describe the results of table top experiments, it is relevant for the movement of celestial bodies in the Solar System. Indeed, lunar laser ranging experiments or precision studies of Jupiter's orbit are interesting probes of the graviton mass.
Now comes the latest twist in the story. Some time ago this paper showed that not everything is allowed in effective theories. Assuming the full theory is unitary, causal and local implies non-trivial constraints on the possible interactions in the low-energy effective theory. These techniques are suitable to constrain, via dispersion relations, derivative interactions of the kind required by the Vainshtein mechanism. Applying them to the dRGT gravity one finds that it is inconsistent to assume the theory is valid all the way up to 𝞚max. Instead, it must be replaced by a more fundamental theory already at a much lower cutoff scale, parameterized as 𝞚 = g*^1/3 𝞚max (the parameter g* is interpreted as the coupling strength of the more fundamental theory). The allowed parameter space in the g*-m plane is showed in this plot:
Massive gravity must live in the lower left corner, outside the gray area excluded theoretically and where the graviton mass satisfies the experimental upper limit m~10^−32 eV. This implies g* ≼ 10^-10, and thus the validity range of the theory is some 3 order of magnitude lower than 𝞚max. In other words, massive gravity is not a consistent effective theory at distance scales below ~1 million km, and thus cannot be used to describe the motion of falling apples, GPS satellites or even the Moon. In this sense, it's not much of a competition to, say, Newton. Dead for the second time.
Is this the end of the story? For the third coming we would need a more general theory with additional light particles beyond the massive graviton, which is consistent theoretically in a larger energy range, realizes the Vainshtein mechanism, and is in agreement with the current experimental observations. This is hard but not impossible to imagine. Whatever the outcome, what I like in this story is the role of theory in driving the progress, which is rarely seen these days. In the process, we have understood a lot of interesting physics whose relevance goes well beyond one specific theory. So the trip was certainly worth it, even if we find ourselves back at the departure point.