The loss of the 750 GeV diphoton resonance is a big blow to the particle physics community. We are currently going through the 5 stages of grief, everyone at their own pace, as can be seen e.g. in this comments section. Nevertheless, it may already be a good moment to revisit the story one last time, so as to understand what went wrong.
In the recent years, physics beyond the Standard Model has seen 2 other flops of comparable impact: the faster-than-light neutrinos in OPERA, and the CMB tensor fluctuations in BICEP. Much as the diphoton signal, both of the above triggered a binge of theoretical explanations, followed by a massive hangover. There was one big difference, however: the OPERA and BICEP signals were due to embarrassing errors on the experiments' side. This doesn't seem to be the case for the diphoton bump at the LHC. Some may wonder whether the Standard Model background may have been slightly underestimated, or whether one experiment may have been biased by the result of the other... But, most likely, the 750 GeV bump was just due to a random fluctuation of the background at this particular energy. Regrettably, the resulting mess cannot be blamed on experimentalists, who were in fact downplaying the anomaly in their official communications. This time it's the theorists who have some explaining to do.
Why did theorists write 500 papers about a statistical fluctuation? One reason is that it didn't look like one at first sight. Back in December 2015, the local significance of the diphoton bump in ATLAS run-2 data was 3.9 sigma, which means the probability of such a fluctuation was 1 in 10000. Combining available run-1 and run-2 diphoton data in ATLAS and CMS, the local significance was increased to 4.4 sigma. All in all, it was a very unusual excess, a 1-in-100000 occurrence! Of course, this number should be interpreted with care. The point is that the LHC experiments perform gazillion different measurements, thus they are bound to observe seemingly unlikely outcomes in a small fraction of them. This can be partly taken into account by calculating the global significance, which is the probability of finding a background fluctuation of the observed size anywhere in the diphoton spectrum. The global significance of the 750 GeV bump quoted by ATLAS was only about two sigma, the fact strongly emphasized by the collaboration. However, that number can be misleading too. One problem with the global significance is that, unlike for the local one, it cannot be easily combined in the presence of separate measurements of the same observable. For the diphoton final state we have ATLAS and CMS measurements in run-1 and run-2, thus 4 independent datasets, and their robust concordance was crucial in creating the excitement. Note also that what is really relevant here is the probability of a fluctuation of a given size in any of the LHC measurement, and that is not captured by the global significance. For these reasons, I find it more transparent work with the local significance, remembering that it should not be interpreted as the probability that the Standard Model is incorrect. By these standards, a 4.4 sigma fluctuation in a combined ATLAS and CMS dataset is still a very significant effect which deserves a special attention. What we learned the hard way is that such large fluctuations do happen at the LHC... This lesson will certainly be taken into account next time we encounter a significant anomaly.
Another reason why the 750 GeV bump was exciting is that the measurement is rather straightforward. Indeed, at the LHC we often see anomalies in complicated final states or poorly controlled differential distributions, and we treat those with much skepticism. But a resonance in the diphoton spectrum is almost the simplest and cleanest observable that one can imagine (only a dilepton or 4-lepton resonance would be cleaner). We already successfully discovered one particle this way - that's how the Higgs boson first showed up in 2011. Thus, we have good reasons to believe that the collaborations control this measurement very well.
Finally, the diphoton bump was so attractive because theoretical explanations were plausible. It was trivial to write down a model fitting the data, there was no need to stretch or fine-tune the parameters, and it was quite natural that the particle first showed in as a diphoton resonance and not in other final states. This is in stark contrast to other recent anomalies which typically require a great deal of gymnastics to fit into a consistent picture. The only thing to give you a pause was the tension with the LHC run-1 diphoton data, but even that became mild after the Moriond update this year.
So we got a huge signal of a new particle in a clean channel with plausible theoretic models to explain it... that was a really bad luck. My conclusion may not be shared by everyone but I don't think that the theory community committed major missteps in this case. Given that for 30 years we have been looking for a clue about the fundamental theory beyond the Standard Model, our reaction was not disproportionate once a seemingly reliable one had arrived. Excitement is an inherent part of physics research. And so is disappointment, apparently.
There remains a question whether we really needed 500 papers... Well, of course not: many of them fill an important gap. Yet many are an interesting read, and I personally learned a lot of exciting physics from them. Actually, I suspect that the fraction of useless papers among the 500 is lower than for regular daily topics. On a more sociological side, these papers exacerbate the problem with our citation culture (mass-grave references), which undermines the citation count as a means to evaluate the research impact. But that is a wider issue which I don't know how to address at the moment.
Time to move on. The ICHEP conference is coming next week, with loads of brand new results based on up to 16 inverse femtobarns of 13 TeV LHC data. Although the rumor is that there is no new exciting anomaly at this point, it will be interesting to see how much room is left for new physics. The hope lingers on, at least until the end of this year.
In the comments section you're welcome to lash out on the entire BSM community - we made a wrong call so we deserve it. Please, however, avoid personal attacks (unless on me). Alternatively, you can also give us a hug :)